

Lawrence Livermore National Laboratory

Biology & Biotechnology Research Program

Introductions

- Joanna S. Albala, Ph.D.
 Senior Biomedical Scientist
 PI, Protein Biochemistry
- Christa Prange, B.S.
 Biomedical Scientist
 Project Manager, I.M.A.G.E. Consortium

Livermore Biosciences Our Vision and Our Mission

Enhancing the nation's health and security through technological innovation in the biosciences.

Livermore conducts multidisciplinary bioscience of high national importance. Our primary roles are to:

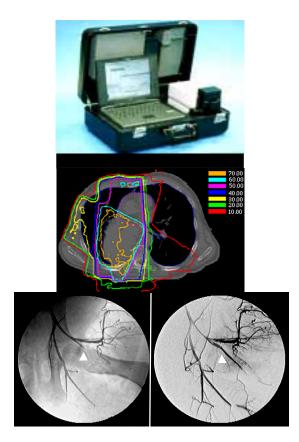
- apply our expertise in support of national security and other laboratory programs;
- improve our understanding of the genome and its relationship to disease susceptibility; and
- advance healthcare.

We execute our roles through synergistic, integrated programs that apply our competencies in genomics, structural biology, biomarkers, bioinstrumentation, bioinformatics, and computational biology.

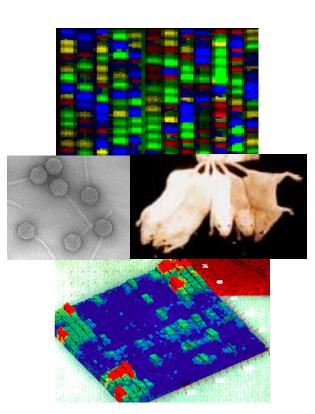
We leverage the laboratory's exceptional capabilities in the physical and engineering sciences.

We partner with universities and industry.

Livermore Biosciences


Enhancing the nation's health and security through technological innovation in the biosciences.

Disease Susceptibility & Prevention


Toxicology & Pharmacology
Structural Biology
Computational Biochemistry
Biochemistry of DNA Repair

Bioengineering & Wash Healthcare Technologies

Microfabrication
Robotics/Lab Automation
Medical Devices

Genomics

DNA Sequencing
Gene Discovery
Comparative Genomics
Disease Diagnostics

Why is there a Genome Project?

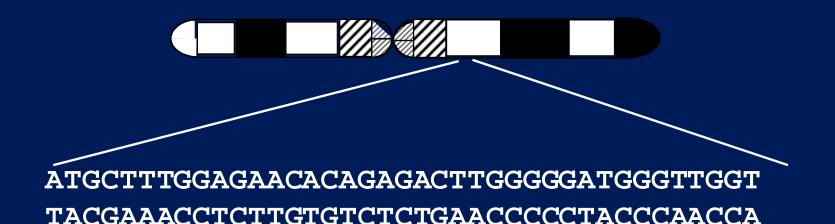
Estimated to be 100,000 human genes

Less than 8% of these genes have been identified

 There are about 3 billion bases (information bits) in the sequence of human DNA

Less than 10% of the sequence has been completed (A G C T)

- A focused program to find all the genes and sequence the DNA is more cost effective than a search for one gene at a time
- Even though only 5-10% of our DNA codes for genes, the rest might not be junk!


Deciphering the genomes of humans, plants, animals, and microbes provides the basis for better medical care and an improved quality of life

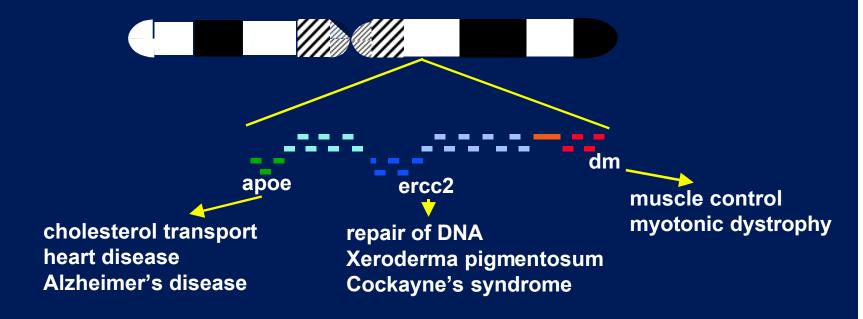
The Human Genome Initiative: DNA Sequence

DNA Sequence

The order of the four chemical units (nucleotides/bases: A, C, G, T) that comprise the genetic code.

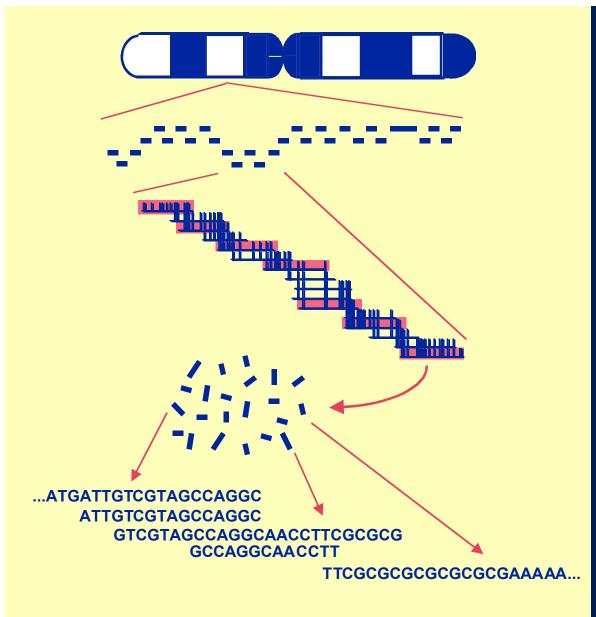
Goal: 3.2 billion highly accurate bases (entire genome) by 2003

Attained: approx. 360 million bases in database


(11% of the genome)

The Human Genome Initiative: Genes & Diseases

Gene Discovery


The location of genes on the chromosome relative to known linkage markers and clones.

Goal: 60,000-100,000 mapped genes by ?

Attained: approx. 5300 mapped genes

(~5% of the genome)

Physical Map

Restriction Mapped Contig - a set of overlapping clones in the physical map

(map clones selected for sequencing are highlighted)

Sub-clones for sequencing ("random" pieces of the map clone which are sequenced)

Assembly of the sequence from the sub-clones to create contiguous sequence of the map clone (closure)

Submission of annotated clone sequence to the database

...ATGATTGTCGTAGCCAGGCAACCTTCGCGCGCGCGCGCGAAAAA...

gene start site

repeat sequence

980115.definitions

THE SUNDAY TIMES

SUNDAY, JANUARY 17, 1999

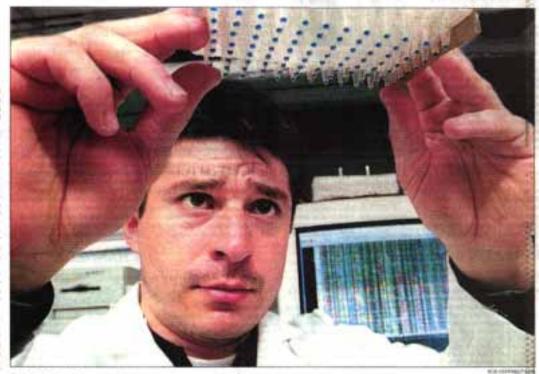
And the Bay Area

PAGE A21

Gene project moves to new home

Researchers hope the relocation will help them reach a goal of discovering DNA's sequence faster

> By Andrea Widener THES STARY MISSISS


WALNUT CREEK - The world's third-largest publicly funded push to uncover the secrets of the human body has almost completed its moveinto a new production facility.

The move, which began in surnest last month, should help the U.S. Department of Energy reach its fofty goal of revealing 35 times more of the body's instruction book than best year - its contribution to the worldwide Human Genome Project.

In the Shadelands Business Park facility, about 150 researchers from Lawrence Livermore and Lawrence Berkeley laboratories will further expose the pattern of genes that determine everything from our hair color to our tendency toward certain diseases, such as diabetes, asthma and schoopbrenia.

The researchers, who are quickly griting back up to speed after their move, are sharing the tricks of the trade that will help them reach their grad fluiter.

Hight row, though, the reresections are still dealing with the details of relocating to a new office: getting to know their new neighbors scross the half, working out the quirks in the new computer lines, arranging poster-size "South Purk" currents on the walk above their new machines and hiring a receptionist so visitors don't have to bang on the windows in hopes of finding someone to open the door.

LOLO CARDENAS holds a module containing 95 samples of DNA materials that will be analyzed by a computer.

Department of Energy program ex-doubling its staff. pands into a second building, further those same problems again when the cially designed facility and nearly. Project, a worldwide effort to deter-

The department's collaboration, consolidating operations from three called the John Genome Institute, is By next year, they'll face some of mational laboratories into one spe- its venture into the Human Genome

mine the under of more than 3 bit-DNA, known as bases or hant pairs. Together these bases serve as the brueprior for our geneu

Specifically, the Juier Genome \$6 from miniature parts of a person's _stitute is examining three of the 3. chromosomes that make up DNAC

Sex GENES, Page A24

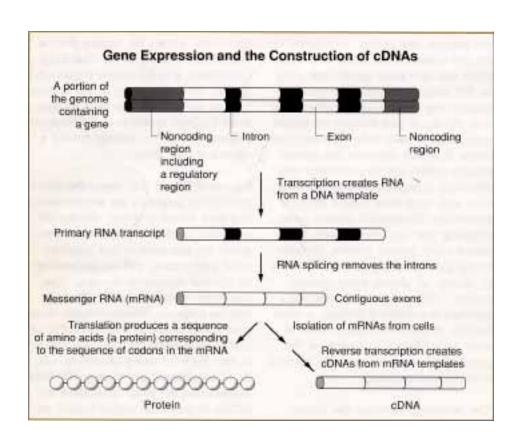
The Joint Genome Institute's Production Sequencing Facility Walnut Creek, CA

Genes associated with some human diseases are also found in other species.

Human Disease	Mouse	Fruit Fly	Worm	Yeast	Bacteria
Cystic Fibrosis	X	X	X	X	X
Myotonic Dystrophy	X	X	X	X	
Achondroplasia	X	X	X	X	
Amyotrophic Lateral Sclerosi	S	X	X	X	X
Bloom Syndrome			X	X	X
Huntington Disease	X				
Colon Cancer (Non-polyposis	s) X	X		X	X
Pancreatic carcinoma		X	X		

These species become useful models to study the genetics of human disease.

The I.M.A.G.E. Consortium: An Integrated Molecular Analysis of Genes and their Expression


Multiple groups working collaboratively to produce a publicly-accessible cDNA resource (libraries, <u>clones</u>, sequence)

The largest public collection of cDNAs in the world - 3.7 million clones from 5 species

All clones and sequence are publicly available!

What is a cDNA?

Overview of the IMAGE project

cDNA libraries

Array 100 384-well plates/week Make three copies of each plate

sequencers, LLNL, distributors

The IMAGE Consortium has arrayed over 3.7 million clones from 340 human (43 tissues) and 97mouse (24 tissues) libraries.

http://image.llnl.gov

Adipose

Adrenal

Alveolus

B Cell

Bone

Bone Marrow

Brain

Breast

Cervix

Cochlea

Colon

Endothelial Cell

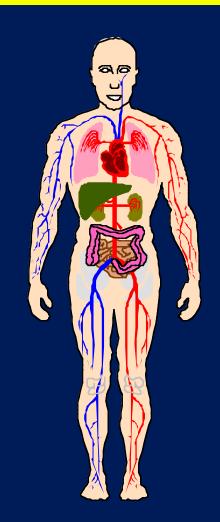
Eye

Fetus (total)

Fibroblast

Germ Cell

Heart


Kidney

Larynx

Liver & Spleen

Leukocyte

Lung

Lymph Node

Muscle

Olfactory Epithelium

Ovary

Pancreas

Parathyroid

Peripheral Nervous System

Pheochromocytoma

Pineal Gland

Placenta

Prostate

Uterus

Pooled Organs

Schwanomma Cell

Skin

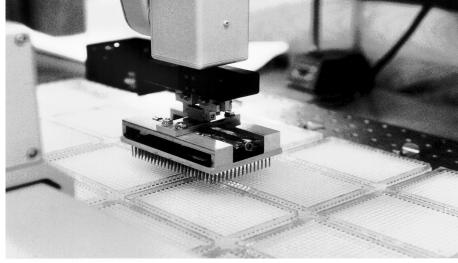
Soft Tissue

Spleen

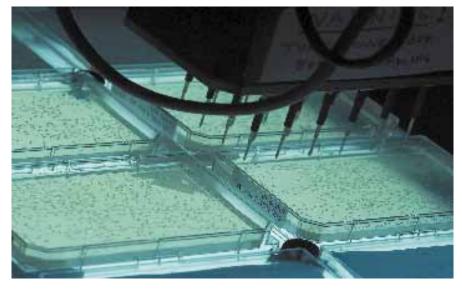
Stomach

Thymus

Thyroid


Wilm's Tumor

990303..image.libr.human



Robots do the work!

Why is this resource important?

1. Gene discovery

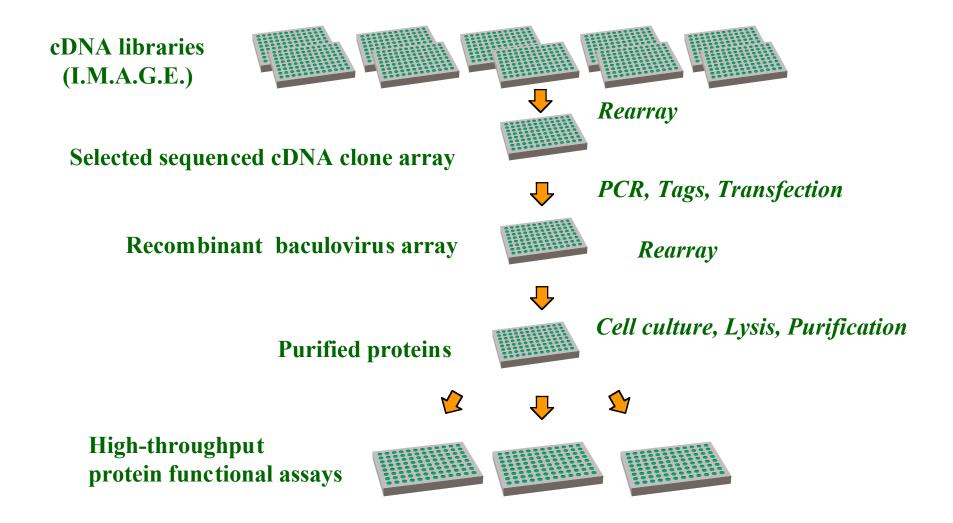
- Where and when are genes expressed?
- How do genes relate to disease?

2. Functional analysis

- What proteins are encoded?
- What do they do?
- How do they interact with other proteins?

Proteins are the workhorses of our body!

Genes Proteins Function


An individual's genes/proteins play a major role in:

- response to exposure; and
- susceptibility/resistance to disease.

Biosciences in the 21st Century will see a much greater emphasis on the study of protein structure and function.

High-throughput Protein Production

A genomics approach: high-density, array-based assays

DNA-DNA

genetic mapping physical mapping gene discovery

DNA-RNA

gene expression gene discovery gene regulation

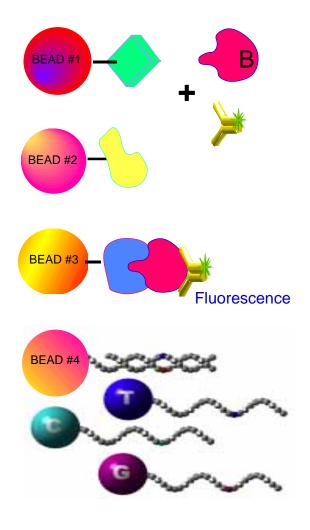
DNA-Protein

sites of regulation

Protein-Protein

epitope mapping interactions

Protein/DNA vs chemicals


inhibitors enhancers

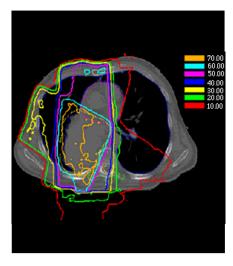
Dynamic liquid array identifies Protein Interactions

High-throughput Protein Functional Assays

We have designed and built several instruments for diagnostics and research

Portable "real-time" PCR

Healthcare Technologies


- develop novel cost-effective healthcare technologies
- coordinate research and marketing LLNL-wide
- to some extent market-driven

Micro-grippers

Radiation therapy

Ergonomics laboratory

Lasers in medicine

Mammography

Ethical, Legal, and Social Issues (ELSI)

Genetic Testing

Should we offer tests to people if there is no treatment? Should we offer tests to people if the results cannot be certain?

Insurability

Should people be denied heath coverage because of their genes? Should the person or society be asked to pay a higher rate?

Employment

Should employers deny a job because of a genetic predisposition?

Criminal Justice

Should a person be held criminally liable if his/her behavior has a genetic basis?

Education

Do we ignore these issues or become proactive?